🔑 Virtual Keys
Track Spend, and control model access via virtual keys for the proxy
Setup
Requirements:
- Need a postgres database (e.g. Supabase, Neon, etc)
- Set
DATABASE_URL=postgresql://<user>:<password>@<host>:<port>/<dbname>
in your env - Set a
master key
, this is your Proxy Admin key - you can use this to create other keys (🚨 must start withsk-
).- Set on config.yaml set your master key under
general_settings:master_key
, example below - Set env variable set
LITELLM_MASTER_KEY
- Set on config.yaml set your master key under
(the proxy Dockerfile checks if the DATABASE_URL
is set and then intializes the DB connection)
export DATABASE_URL=postgresql://<user>:<password>@<host>:<port>/<dbname>
You can then generate keys by hitting the /key/generate
endpoint.
Step 1: Save postgres db url
model_list:
- model_name: gpt-4
litellm_params:
model: ollama/llama2
- model_name: gpt-3.5-turbo
litellm_params:
model: ollama/llama2
general_settings:
master_key: sk-1234
database_url: "postgresql://<user>:<password>@<host>:<port>/<dbname>" # 👈 KEY CHANGE
Step 2: Start litellm
litellm --config /path/to/config.yaml
Step 3: Generate keys
curl 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer <your-master-key>' \
--header 'Content-Type: application/json' \
--data-raw '{"models": ["gpt-3.5-turbo", "gpt-4"], "metadata": {"user": "ishaan@berri.ai"}}'
Advanced - Spend Tracking
Get spend per:
- key - via
/key/info
Swagger - user - via
/user/info
Swagger - team - via
/team/info
Swagger - ⏳ end-users - via
/end_user/info
- Comment on this issue for end-user cost tracking
How is it calculated?
The cost per model is stored here and calculated by the completion_cost
function.
How is it tracking?
Spend is automatically tracked for the key in the "LiteLLM_VerificationTokenTable". If the key has an attached 'user_id' or 'team_id', the spend for that user is tracked in the "LiteLLM_UserTable", and team in the "LiteLLM_TeamTable".
- Key Spend
- User Spend
- Team Spend
You can get spend for a key by using the /key/info
endpoint.
curl 'http://0.0.0.0:4000/key/info?key=<user-key>' \
-X GET \
-H 'Authorization: Bearer <your-master-key>'
This is automatically updated (in USD) when calls are made to /completions, /chat/completions, /embeddings using litellm's completion_cost() function. See Code.
Sample response
{
"key": "sk-tXL0wt5-lOOVK9sfY2UacA",
"info": {
"token": "sk-tXL0wt5-lOOVK9sfY2UacA",
"spend": 0.0001065, # 👈 SPEND
"expires": "2023-11-24T23:19:11.131000Z",
"models": [
"gpt-3.5-turbo",
"gpt-4",
"claude-2"
],
"aliases": {
"mistral-7b": "gpt-3.5-turbo"
},
"config": {}
}
}
1. Create a user
curl --location 'http://localhost:4000/user/new' \
--header 'Authorization: Bearer <your-master-key>' \
--header 'Content-Type: application/json' \
--data-raw '{user_email: "krrish@berri.ai"}'
Expected Response
{
...
"expires": "2023-12-22T09:53:13.861000Z",
"user_id": "my-unique-id", # 👈 unique id
"max_budget": 0.0
}
2. Create a key for that user
curl 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer <your-master-key>' \
--header 'Content-Type: application/json' \
--data-raw '{"models": ["gpt-3.5-turbo", "gpt-4"], "user_id": "my-unique-id"}'
Returns a key - sk-...
.
3. See spend for user
curl 'http://0.0.0.0:4000/user/info?user_id=my-unique-id' \
-X GET \
-H 'Authorization: Bearer <your-master-key>'
Expected Response
{
...
"spend": 0 # 👈 SPEND
}
Use teams, if you want keys to be owned by multiple people (e.g. for a production app).
1. Create a team
curl --location 'http://localhost:4000/team/new' \
--header 'Authorization: Bearer <your-master-key>' \
--header 'Content-Type: application/json' \
--data-raw '{"team_alias": "my-awesome-team"}'
Expected Response
{
...
"expires": "2023-12-22T09:53:13.861000Z",
"team_id": "my-unique-id", # 👈 unique id
"max_budget": 0.0
}
2. Create a key for that team
curl 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer <your-master-key>' \
--header 'Content-Type: application/json' \
--data-raw '{"models": ["gpt-3.5-turbo", "gpt-4"], "team_id": "my-unique-id"}'
Returns a key - sk-...
.
3. See spend for team
curl 'http://0.0.0.0:4000/team/info?team_id=my-unique-id' \
-X GET \
-H 'Authorization: Bearer <your-master-key>'
Expected Response
{
...
"spend": 0 # 👈 SPEND
}
Advanced - Model Access
Restrict models by team_id
litellm-dev
can only access azure-gpt-3.5
1. Create a team via /team/new
curl --location 'http://localhost:4000/team/new' \
--header 'Authorization: Bearer <your-master-key>' \
--header 'Content-Type: application/json' \
--data-raw '{
"team_alias": "litellm-dev",
"models": ["azure-gpt-3.5"]
}'
# returns {...,"team_id": "my-unique-id"}
2. Create a key for team
curl --location 'http://localhost:4000/key/generate' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data-raw '{"team_id": "my-unique-id"}'
3. Test it
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer sk-qo992IjKOC2CHKZGRoJIGA' \
--data '{
"model": "BEDROCK_GROUP",
"messages": [
{
"role": "user",
"content": "hi"
}
]
}'
{"error":{"message":"Invalid model for team litellm-dev: BEDROCK_GROUP. Valid models for team are: ['azure-gpt-3.5']\n\n\nTraceback (most recent call last):\n File \"/Users/ishaanjaffer/Github/litellm/litellm/proxy/proxy_server.py\", line 2298, in chat_completion\n _is_valid_team_configs(\n File \"/Users/ishaanjaffer/Github/litellm/litellm/proxy/utils.py\", line 1296, in _is_valid_team_configs\n raise Exception(\nException: Invalid model for team litellm-dev: BEDROCK_GROUP. Valid models for team are: ['azure-gpt-3.5']\n\n","type":"None","param":"None","code":500}}%
Model Aliases
If a user is expected to use a given model (i.e. gpt3-5), and you want to:
- try to upgrade the request (i.e. GPT4)
- or downgrade it (i.e. Mistral)
- OR rotate the API KEY (i.e. open AI)
- OR access the same model through different end points (i.e. openAI vs openrouter vs Azure)
Here's how you can do that:
Step 1: Create a model group in config.yaml (save model name, api keys, etc.)
model_list:
- model_name: my-free-tier
litellm_params:
model: huggingface/HuggingFaceH4/zephyr-7b-beta
api_base: http://0.0.0.0:8001
- model_name: my-free-tier
litellm_params:
model: huggingface/HuggingFaceH4/zephyr-7b-beta
api_base: http://0.0.0.0:8002
- model_name: my-free-tier
litellm_params:
model: huggingface/HuggingFaceH4/zephyr-7b-beta
api_base: http://0.0.0.0:8003
- model_name: my-paid-tier
litellm_params:
model: gpt-4
api_key: my-api-key
Step 2: Generate a user key - enabling them access to specific models, custom model aliases, etc.
curl -X POST "https://0.0.0.0:4000/key/generate" \
-H "Authorization: Bearer <your-master-key>" \
-H "Content-Type: application/json" \
-d '{
"models": ["my-free-tier"],
"aliases": {"gpt-3.5-turbo": "my-free-tier"},
"duration": "30min"
}'
- How to upgrade / downgrade request? Change the alias mapping
- How are routing between diff keys/api bases done? litellm handles this by shuffling between different models in the model list with the same model_name. See Code
Grant Access to new model
Use model access groups to give users access to select models, and add new ones to it over time (e.g. mistral, llama-2, etc.)
Step 1. Assign model, access group in config.yaml
model_list:
- model_name: text-embedding-ada-002
litellm_params:
model: azure/azure-embedding-model
api_base: "os.environ/AZURE_API_BASE"
api_key: "os.environ/AZURE_API_KEY"
api_version: "2023-07-01-preview"
model_info:
access_groups: ["beta-models"] # 👈 Model Access Group
Step 2. Create key with access group
curl --location 'http://localhost:4000/key/generate' \
-H 'Authorization: Bearer <your-master-key>' \
-H 'Content-Type: application/json' \
-d '{"models": ["beta-models"], # 👈 Model Access Group
"max_budget": 0,}'
Advanced - Pass LiteLLM Key in custom header
Use this to make LiteLLM proxy look for the virtual key in a custom header instead of the default "Authorization"
header
Step 1 Define litellm_key_header_name
name on litellm config.yaml
model_list:
- model_name: fake-openai-endpoint
litellm_params:
model: openai/fake
api_key: fake-key
api_base: https://exampleopenaiendpoint-production.up.railway.app/
general_settings:
master_key: sk-1234
litellm_key_header_name: "X-Litellm-Key" # 👈 Key Change
Step 2 Test it
In this request, litellm will use the Virtual key in the X-Litellm-Key
header
- curl
- OpenAI Python SDK
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "X-Litellm-Key: Bearer sk-1234" \
-H "Authorization: Bearer bad-key" \
-d '{
"model": "fake-openai-endpoint",
"messages": [
{"role": "user", "content": "Hello, Claude gm!"}
]
}'
Expected Response
Expect to see a successfull response from the litellm proxy since the key passed in X-Litellm-Key
is valid
{"id":"chatcmpl-f9b2b79a7c30477ab93cd0e717d1773e","choices":[{"finish_reason":"stop","index":0,"message":{"content":"\n\nHello there, how may I assist you today?","role":"assistant","tool_calls":null,"function_call":null}}],"created":1677652288,"model":"gpt-3.5-turbo-0125","object":"chat.completion","system_fingerprint":"fp_44709d6fcb","usage":{"completion_tokens":12,"prompt_tokens":9,"total_tokens":21}
client = openai.OpenAI(
api_key="not-used",
base_url="https://api-gateway-url.com/llmservc/api/litellmp",
default_headers={
"Authorization": f"Bearer {API_GATEWAY_TOKEN}", # (optional) For your API Gateway
"X-Litellm-Key": f"Bearer sk-1234" # For LiteLLM Proxy
}
)
Advanced - Custom Auth
You can now override the default api key auth.
Here's how:
1. Create a custom auth file.
Make sure the response type follows the UserAPIKeyAuth
pydantic object. This is used by for logging usage specific to that user key.
from litellm.proxy._types import UserAPIKeyAuth
async def user_api_key_auth(request: Request, api_key: str) -> UserAPIKeyAuth:
try:
modified_master_key = "sk-my-master-key"
if api_key == modified_master_key:
return UserAPIKeyAuth(api_key=api_key)
raise Exception
except:
raise Exception
2. Pass the filepath (relative to the config.yaml)
Pass the filepath to the config.yaml
e.g. if they're both in the same dir - ./config.yaml
and ./custom_auth.py
, this is what it looks like:
model_list:
- model_name: "openai-model"
litellm_params:
model: "gpt-3.5-turbo"
litellm_settings:
drop_params: True
set_verbose: True
general_settings:
custom_auth: custom_auth.user_api_key_auth
3. Start the proxy
$ litellm --config /path/to/config.yaml
Custom /key/generate
If you need to add custom logic before generating a Proxy API Key (Example Validating team_id
)
1. Write a custom custom_generate_key_fn
The input to the custom_generate_key_fn function is a single parameter: data
(Type: GenerateKeyRequest)
The output of your custom_generate_key_fn
should be a dictionary with the following structure
{
"decision": False,
"message": "This violates LiteLLM Proxy Rules. No team id provided.",
}
decision (Type: bool): A boolean value indicating whether the key generation is allowed (True) or not (False).
message (Type: str, Optional): An optional message providing additional information about the decision. This field is included when the decision is False.
async def custom_generate_key_fn(data: GenerateKeyRequest)-> dict:
"""
Asynchronous function for generating a key based on the input data.
Args:
data (GenerateKeyRequest): The input data for key generation.
Returns:
dict: A dictionary containing the decision and an optional message.
{
"decision": False,
"message": "This violates LiteLLM Proxy Rules. No team id provided.",
}
"""
# decide if a key should be generated or not
print("using custom auth function!")
data_json = data.json() # type: ignore
# Unpacking variables
team_id = data_json.get("team_id")
duration = data_json.get("duration")
models = data_json.get("models")
aliases = data_json.get("aliases")
config = data_json.get("config")
spend = data_json.get("spend")
user_id = data_json.get("user_id")
max_parallel_requests = data_json.get("max_parallel_requests")
metadata = data_json.get("metadata")
tpm_limit = data_json.get("tpm_limit")
rpm_limit = data_json.get("rpm_limit")
if team_id is not None and team_id == "litellm-core-infra@gmail.com":
# only team_id="litellm-core-infra@gmail.com" can make keys
return {
"decision": True,
}
else:
print("Failed custom auth")
return {
"decision": False,
"message": "This violates LiteLLM Proxy Rules. No team id provided.",
}
2. Pass the filepath (relative to the config.yaml)
Pass the filepath to the config.yaml
e.g. if they're both in the same dir - ./config.yaml
and ./custom_auth.py
, this is what it looks like:
model_list:
- model_name: "openai-model"
litellm_params:
model: "gpt-3.5-turbo"
litellm_settings:
drop_params: True
set_verbose: True
general_settings:
custom_key_generate: custom_auth.custom_generate_key_fn
Upperbound /key/generate params
Use this, if you need to set default upperbounds for max_budget
, budget_duration
or any key/generate
param per key.
Set litellm_settings:upperbound_key_generate_params
:
litellm_settings:
upperbound_key_generate_params:
max_budget: 100 # upperbound of $100, for all /key/generate requests
duration: "30d" # upperbound of 30 days for all /key/generate requests
Expected Behavior
- Send a
/key/generate
request withmax_budget=200
- Key will be created with
max_budget=100
since 100 is the upper bound
Default /key/generate params
Use this, if you need to control the default max_budget
or any key/generate
param per key.
When a /key/generate
request does not specify max_budget
, it will use the max_budget
specified in default_key_generate_params
Set litellm_settings:default_key_generate_params
:
litellm_settings:
default_key_generate_params:
max_budget: 1.5000
models: ["azure-gpt-3.5"]
duration: # blank means `null`
metadata: {"setting":"default"}
team_id: "core-infra"