Skip to main content

sentry

tip

This is community maintained, Please make an issue if you run into a bug https://github.com/BerriAI/litellm

Sentry - Log LLM Exceptions

Sentry provides error monitoring for production. LiteLLM can add breadcrumbs and send exceptions to Sentry with this integration

Track exceptions for:

  • litellm.completion() - completion()for 100+ LLMs
  • litellm.acompletion() - async completion()
  • Streaming completion() & acompletion() calls

Usage

Set SENTRY_DSN & callback

import litellm, os
os.environ["SENTRY_DSN"] = "your-sentry-url"
litellm.failure_callback=["sentry"]

Sentry callback with completion

import litellm
from litellm import completion

litellm.input_callback=["sentry"] # adds sentry breadcrumbing
litellm.failure_callback=["sentry"] # [OPTIONAL] if you want litellm to capture -> send exception to sentry

import os
os.environ["SENTRY_DSN"] = "your-sentry-url"
os.environ["OPENAI_API_KEY"] = "your-openai-key"

# set bad key to trigger error
api_key="bad-key"
response = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hey!"}], stream=True, api_key=api_key)

print(response)

Redacting Messages, Response Content from Sentry Logging

Set litellm.turn_off_message_logging=True This will prevent the messages and responses from being logged to sentry, but request metadata will still be logged.

Let us know if you need any additional options from Sentry.