LiteLLM - Getting Started
https://github.com/BerriAI/litellm
Call 100+ LLMs using the same Input/Output Format
- Translate inputs to provider's
completion
,embedding
, andimage_generation
endpoints - Consistent output, text responses will always be available at
['choices'][0]['message']['content']
- Retry/fallback logic across multiple deployments (e.g. Azure/OpenAI) - Router
- Track spend & set budgets per project LiteLLM Proxy Server
How to use LiteLLM
You can use litellm through either:
- LiteLLM Proxy Server - Server (LLM Gateway) to call 100+ LLMs, load balance, cost tracking across projects
- LiteLLM python SDK - Python Client to call 100+ LLMs, load balance, cost tracking
When to use LiteLLM Proxy Server
Use LiteLLM Proxy Server if you want a central service to access multiple LLMs
Typically used by Gen AI Enablement / ML PLatform Teams
- LiteLLM Proxy gives you a unified interface to access multiple LLMs (100+ LLMs)
- Track LLM Usage and setup guardrails
- Customize Logging, Guardrails, Caching per project
When to use LiteLLM Python SDK
Use LiteLLM Python SDK if you want to use LiteLLM in your python code
Typically used by developers building llm projects
- LiteLLM SDK gives you a unified interface to access multiple LLMs (100+ LLMs)
- Retry/fallback logic across multiple deployments (e.g. Azure/OpenAI) - Router
Basic usage
pip install litellm
- OpenAI
- Anthropic
- VertexAI
- HuggingFace
- Azure OpenAI
- Ollama
- Openrouter
from litellm import completion
import os
## set ENV variables
os.environ["OPENAI_API_KEY"] = "your-api-key"
response = completion(
model="gpt-3.5-turbo",
messages=[{ "content": "Hello, how are you?","role": "user"}]
)
from litellm import completion
import os
## set ENV variables
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"
response = completion(
model="claude-2",
messages=[{ "content": "Hello, how are you?","role": "user"}]
)
from litellm import completion
import os
# auth: run 'gcloud auth application-default'
os.environ["VERTEX_PROJECT"] = "hardy-device-386718"
os.environ["VERTEX_LOCATION"] = "us-central1"
response = completion(
model="chat-bison",
messages=[{ "content": "Hello, how are you?","role": "user"}]
)
from litellm import completion
import os
os.environ["HUGGINGFACE_API_KEY"] = "huggingface_api_key"
# e.g. Call 'WizardLM/WizardCoder-Python-34B-V1.0' hosted on HF Inference endpoints
response = completion(
model="huggingface/WizardLM/WizardCoder-Python-34B-V1.0",
messages=[{ "content": "Hello, how are you?","role": "user"}],
api_base="https://my-endpoint.huggingface.cloud"
)
print(response)
from litellm import completion
import os
## set ENV variables
os.environ["AZURE_API_KEY"] = ""
os.environ["AZURE_API_BASE"] = ""
os.environ["AZURE_API_VERSION"] = ""
# azure call
response = completion(
"azure/<your_deployment_name>",
messages = [{ "content": "Hello, how are you?","role": "user"}]
)
from litellm import completion
response = completion(
model="ollama/llama2",
messages = [{ "content": "Hello, how are you?","role": "user"}],
api_base="http://localhost:11434"
)
from litellm import completion
import os
## set ENV variables
os.environ["OPENROUTER_API_KEY"] = "openrouter_api_key"
response = completion(
model="openrouter/google/palm-2-chat-bison",
messages = [{ "content": "Hello, how are you?","role": "user"}],
)
Streaming
Set stream=True
in the completion
args.
- OpenAI
- Anthropic
- VertexAI
- HuggingFace
- Azure OpenAI
- Ollama
- Openrouter
from litellm import completion
import os
## set ENV variables
os.environ["OPENAI_API_KEY"] = "your-api-key"
response = completion(
model="gpt-3.5-turbo",
messages=[{ "content": "Hello, how are you?","role": "user"}],
stream=True,
)
from litellm import completion
import os
## set ENV variables
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"
response = completion(
model="claude-2",
messages=[{ "content": "Hello, how are you?","role": "user"}],
stream=True,
)
from litellm import completion
import os
# auth: run 'gcloud auth application-default'
os.environ["VERTEX_PROJECT"] = "hardy-device-386718"
os.environ["VERTEX_LOCATION"] = "us-central1"
response = completion(
model="chat-bison",
messages=[{ "content": "Hello, how are you?","role": "user"}],
stream=True,
)
from litellm import completion
import os
os.environ["HUGGINGFACE_API_KEY"] = "huggingface_api_key"
# e.g. Call 'WizardLM/WizardCoder-Python-34B-V1.0' hosted on HF Inference endpoints
response = completion(
model="huggingface/WizardLM/WizardCoder-Python-34B-V1.0",
messages=[{ "content": "Hello, how are you?","role": "user"}],
api_base="https://my-endpoint.huggingface.cloud",
stream=True,
)
print(response)
from litellm import completion
import os
## set ENV variables
os.environ["AZURE_API_KEY"] = ""
os.environ["AZURE_API_BASE"] = ""
os.environ["AZURE_API_VERSION"] = ""
# azure call
response = completion(
"azure/<your_deployment_name>",
messages = [{ "content": "Hello, how are you?","role": "user"}],
stream=True,
)
from litellm import completion
response = completion(
model="ollama/llama2",
messages = [{ "content": "Hello, how are you?","role": "user"}],
api_base="http://localhost:11434",
stream=True,
)
from litellm import completion
import os
## set ENV variables
os.environ["OPENROUTER_API_KEY"] = "openrouter_api_key"
response = completion(
model="openrouter/google/palm-2-chat-bison",
messages = [{ "content": "Hello, how are you?","role": "user"}],
stream=True,
)
Exception handling
LiteLLM maps exceptions across all supported providers to the OpenAI exceptions. All our exceptions inherit from OpenAI's exception types, so any error-handling you have for that, should work out of the box with LiteLLM.
from openai.error import OpenAIError
from litellm import completion
os.environ["ANTHROPIC_API_KEY"] = "bad-key"
try:
# some code
completion(model="claude-instant-1", messages=[{"role": "user", "content": "Hey, how's it going?"}])
except OpenAIError as e:
print(e)
Logging Observability - Log LLM Input/Output (Docs)
LiteLLM exposes pre defined callbacks to send data to Lunary, Langfuse, Helicone, Promptlayer, Traceloop, Slack
from litellm import completion
## set env variables for logging tools
os.environ["HELICONE_API_KEY"] = "your-helicone-key"
os.environ["LANGFUSE_PUBLIC_KEY"] = ""
os.environ["LANGFUSE_SECRET_KEY"] = ""
os.environ["LUNARY_PUBLIC_KEY"] = "your-lunary-public-key"
os.environ["OPENAI_API_KEY"]
# set callbacks
litellm.success_callback = ["lunary", "langfuse", "helicone"] # log input/output to lunary, langfuse, supabase, helicone
#openai call
response = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hi 👋 - i'm openai"}])
Track Costs, Usage, Latency for streaming
Use a callback function for this - more info on custom callbacks: https://docs.litellm.ai/docs/observability/custom_callback
import litellm
# track_cost_callback
def track_cost_callback(
kwargs, # kwargs to completion
completion_response, # response from completion
start_time, end_time # start/end time
):
try:
response_cost = kwargs.get("response_cost", 0)
print("streaming response_cost", response_cost)
except:
pass
# set callback
litellm.success_callback = [track_cost_callback] # set custom callback function
# litellm.completion() call
response = completion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": "Hi 👋 - i'm openai"
}
],
stream=True
)
OpenAI Proxy
Track spend across multiple projects/people
The proxy provides:
📖 Proxy Endpoints - Swagger Docs
Quick Start Proxy - CLI
pip install 'litellm[proxy]'
Step 1: Start litellm proxy
$ litellm --model huggingface/bigcode/starcoder
#INFO: Proxy running on http://0.0.0.0:4000
Step 2: Make ChatCompletions Request to Proxy
import openai # openai v1.0.0+
client = openai.OpenAI(api_key="anything",base_url="http://0.0.0.0:4000") # set proxy to base_url
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
])
print(response)